
Better Abstractions for Reusable Components & Architectures
XBSE Before CBSE

Christos Kloukinas
Department of Computing
City University London
http://www.soi.city.ac.uk/%7Ekloukin

Current modelling languages for MDE, e.g., UML,

AADL, SysML, have been developed with the CBSE

paradigm in mind. As such they offer very little support

for connectors.

This is unfortunate, given how reusable connectors are

and how important they are for deriving the non-

functional, system properties that are of most interest

at the architectural level - a level where components are

usually barely defined at any detail.
This work attempts to review the situation and hopefully
help refocus the architectural design support towards the
use of connectors.

1 Introduction

Current CBSE languages do not support the definition of complex con-
nectors and focus instead on specifying as many component charac-
teristics as possible; given two resistors they will attempt to describe
their impedance, weight, size, . . . However, the overall impedance is a
property of how these two resistors are connected and how they com-
municate, i.e., a property of the connector used.
Luck of full support for the easy, explicit definition of complex connec-
tors hinders the understanding and analysis of our systems.

2 XBSE - Changing the Paradigm

Algorithms + Data Structures = Programs (1)

Connectors + Components = Architectures (2)

CBSE is great for lower level designs and development but at higher
levels it is the connectors that matter most - so we need to develop an
XBSE approach (Connector-Based. . . ) to designing system architec-
tures.
XBSE essentially follows Wirth’s statement (1), turning it into (2) with
connectors standing for algorithms and components for data structures.
Indeed, in a top-down design approach, one starts with the connectors
desired and then tries to select/develop the components that can be
used with them. In a bottom-up design approach one starts with the
components at hand and tries to select/develop connectors that can
make use of these (and in reality, different parts of a system may well
be designed following different approaches). Our insistence on the im-
portance of connectors should, therefore, not be taken as an attempt
to disparage the importance of components. It is only because current
approaches have shown a quite imbalanced interest in the latter that
we attempt to bring connectors back into the light. Both are needed
equally - but connectors need highly more support at this point.

3 More Support for XBSE’s Connectors

Connectors for XBSE need better support. They need at least †:

Roles

• Who participates in the connector’s protocol?

• How should they interact?

If component’s actions are first-order predicates, connector’s are higher-
order ones. . .

Goals

• What is the overall goal of the connector?

• What is the local goal of each role?

Structural constraints

• Who can assume which/how many role(s)?

†More details in the accompanying paper.

4 XBSE’s Configuration & Control Strategies

Architectural configuration should go beyond simple port-role map-
pings; it needs to add support for the control strategies to be used by
components in order to meet the goals of the roles they have assumed.

5 Control Strategies & Reusability - An Example

Phil(N) = sit

; f[N].take

; f[N+1].take

; eat

; f[N+1].release

; f[N].release

; think ; Phil

Phil(N) = sit

; (f[N].take)

|| f[N+1].take)

; eat

; (f[N+1].release)

|| f[N].release)

; think ; Phil
(a) Dining Philosopher (b) Reusable Dining Philosopher

CS(N) = ( when (N%2=0) f[N+1].take ; f[N].take

| when (N%2=1) f[N].take ; f[N+1].take )
(c) A control strategy for (b)

Combining control with behaviour as in (a) leads to problems and
reduces reuse, while separating them as in (b) & (c) solves the
problem and allows the component to be used in more contexts, e.g.,
without a butler component.

6 How Can All These Help?

• Better separate:

- Behaviour (components), from

- Interaction (connectors), and

- Control (strategies).

• Increase component reuse.

• Reduce over-specification.

• Ease the system’s control.

• Better connector description.

• Re-balance the architectural description of systems:

- Ease communication - no more a million “wires” but a small set of
well understood communication protocols.

- Analysis depends on connectors - components sometimes abstracted
to a small set of numbers, e.g., period, computation time, mean time
between failure, etc.

Connectors impose analyses - Components endure them. . .

- Explicitly identifying connectors makes the selection of analyses
methods and their application simpler.

7 Future Work - What’s Missing?

Almost everything. . . Some points in particular are:

• Should channels and connectivity patterns (star, bus, hypercube,
etc.) be included? Seems so - but how best to do it?

• Provide a link with CBSE at the level below.

• Explore the connections with Aspect-Orientation - cross-cutting
system properties, interaction patterns (might provide the link to
CBSE).

• Model real systems - what are their connectors? Not the wires or ba-
sic communication technology like blackboard/bus but the real pro-
tocols, like Model-View-Controller (i.e., feedback control), Master-
Slave, . . .

• Good tool support (for more than just drawing boxes).

Acknowledgments

This work has been funded by the European Commission Information
Society Technologies Programme, as part of the projects:

• SERENITY (contract FP6-27587); and

• SLA@SOI (contract FP7-216556).

The author would also like to thank the anonymous reviewers for their
very helpful feedback.

http://www.soi.city.ac.uk/%7Ekloukin

	Introduction
	XBSE - Changing the Paradigm
	More Support for XBSE's Connectors
	XBSE's Configuration & Control Strategies
	Control Strategies & Reusability - An Example
	How Can All These Help?
	Future Work - What's Missing?

